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INTRODUCTION 

Salts decrease the amount of soil water that 

plants can extract due to an increase in the 

osmotic potential, this has an adverse effect on 

the plant‟s metabolism (Douaik et al. 2004).  

Therefore, it is imperative that in areas that have 

the potential to be affected by soil salinity plans 

are developed to manage it.  One of the first 

steps in developing a soil salinity management 

plan is to map the soil salinity to quantify its 

spatial extent. 

Regression models can be used to generate the 

spatial extent of soil salinity, if some predictive 

data is available (e.g. remote sensing).Two types 

of regression models can be used: linear and 

nonlinear.  Linear regression models involve 

modeling the relationship between a dependent 

variable (e.g. soil salinity) and one or more 

independent variables (e.g. IKONOS satellite 

image bands). In the case that one independent 

variable is used (e.g. one band of an IKONOS 

satellite image), the process is called simple 

linear regression. For more than one independent 

variable (e.g. more than one band of an 

IKONOS satellite image), the process is called 

multiple linear regression (Freedman, 2009). In 

multivariate or multiple linear regressions, 

multiple correlated dependent variables are 

predicted, while in simple linear regression a 

single scalar variable is predicted (Rencher and 

Christensen, 2012).  
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The first linear regression model used in this 

study is an Ordinary Least Squares (OLS) model 

which is one of the most widely used regression 

models. OLS is based on studying the relationship 

between two or more variables (Gujarat, 2003; 

Upton et al, 2002). This empirical model assumes 

that the model‟s error term is normally, 

independently, and identically distributed 

(i.i.d.). OLS yields the most efficient unbiased 

estimators for the regression model‟s coefficients. 

However, when there is a certain degree of 

correlation between the residuals, the OLS 

model can be misleading. 

The second linear regression model used in this 

study is the Generalized Linear Model (GLM), 

which is a flexible generalization of the OLS 

model and allows for response variables that 

have error distribution models other than a 

normal distribution. Generalized linear models 

were formulated as a way of unifying various 

other statistical models, including Linear, 

Logistic, and Poisson regressions (Nelder and 

Wedderburn, 1972). 

Nonlinear regression differs from linear regression 

in that the least-squares estimators of their 

parameters are not:1) unbiased; 2) normally 

distributed; and3) minimum variance estimators. 

In nonlinear regression, the observed data is 

modeled by a function which is a nonlinear 

combination of model parameters and depends 

on one or more independent variables. A 

Multivariate Adaptive Regression Splines 

(MARS) model is evaluated in this study.  The 

MARS model was introduced by Jerome H. 

Friedman in 1991 (Friedman, 1991). MARS is a 

generalization of recursive partitioning that uses 

spline fitting instead of other simple fitting 

functions (Breiman et al., 1984; and Lewis and 

Stevens 1991). MARS works by fitting a model 

in the form of an expansion in product spline 

basis functions whose predictors are chosen 

using a forward and backward recursive partition 

strategy. MARS produces continuous models 

for high dimensional data that can have multiple 

partitioning and predictor variable interactions 

(Lewis and Stevens, 1991).  

This study also evaluated the performance of an 

Artificial Neural Network (ANN) to predict soil 

salinity. ANN‟s are a computational model 

typically organized in layers and made up of a 

number of interconnected nodes which contain 

an activation function. They are inspired by the 

biological neural networks that comprise animal 

brains. These models often consist of a large 

number of neurons, which are simple linear or 

nonlinear computing elements, frequently 

interconnected in complex ways and commonly 

organized into layers (Sarle 1994). The input 

layer communicates to one or more hidden 

layers where the actual processing is done via a 

system of weighted connections. The hidden 

layers link to an output layer where the answer 

is the output. The mathematical structure of 

ANN‟s is capable of identifying complex 

nonlinear relationships between input and output 

data sets and has been found to be useful and 

efficient, particularly in problems that are 

difficult to describe using physical equations 

(Hsu K. et al., 1995).The multilayer perception 

of ANN‟s can be considered as nonlinear 

regression and discriminant models can be 

implemented with standard statistical software 

(Sarle 1994). 

Use of remote sensing of surface features to 

identify and map salt affected areas has been 

used extensively (Allbed, et al., 2014; Abbas, et 

al., 2013; Wu, et al., 2008; and Robbins and 

Wiegand 1990). McColl et al. (2012) mentioned 

that spatial resolution, clouds, surface roughness 

and vegetation cover affect the use of remote 

sensing data. Eldeiry and Garcia (2008, 2010, 

and 2011) stated that integrating geostatistical 

techniques with remote sensing data has great 

potential in estimating soil salinity. Wiegand et 

al. (1994) developed a procedure for using soil 

salinity, plant information, digitized color 

infrared aerial photography and videography to 

help determine soil salinity. Color and thermal 

infrared aerial photography as well as spectral 

image interpretation techniques have also been 

used for mapping surface land salinity 

(Abuelgasim and Ammad, 2019;Abbasm 2013; 

and Spies and Woodgate, 2004). 

In order to determine field scale variation and 

heterogeneity, several Electromagnetic Induction 

(EMI) devices are currently utilized such as 

EM-31, EM-34, and EM-38, all of which were 

developed by Geonics Ltd. in Mississauga, ON, 

Canada. Robinson et al. (2009) used EMI to 

identify zones of water depletion and accumulation. 

Eldeiry and Garcia (2011, 2012a, and 2012b) 

used a variety of techniques to map soil salinity 

and manage crop yield. Zhu et al. (2010a, b) 

relied on repeated EMI surveys to detect the 

spatial variations of soil moisture, soil texture, 

soil type and subsurface flow paths. Saey et al. 

(2013) demonstrated the potential of multi-

receiver EMI soil surveys to map and interpret 

the soil landscape and to discern archaeological 

as well as small and natural features. 

https://en.wikipedia.org/wiki/Jerome_H._Friedman
https://en.wikipedia.org/wiki/Jerome_H._Friedman
https://en.wikipedia.org/wiki/Jerome_H._Friedman


Evaluating Linear and Nonlinear Regression Models in Mapping Soil Salinity 

International Journal of Research in Agriculture and Forestry V7 ● I3 ● 2020                                           23 

It is important to analyze the spatial point 

pattern, autocorrelation, and distribution of the 

collected samples before any regression or 

interpolation of the data.  Diggle (2003) classifies 

spatial point patterns in three main classes: 

aggregation (clustering), regularity (inhibition) 

and complete spatial randomness (CSR). 

Ripley‟s K-function is a spatial analysis method 

used to describe how point patterns occur over a 

given area of interest. This method estimates the 

expected number of random points within a 

distance (r) of a randomly chosen point within a 

plot and it is typically used to compare a given 

point distribution with a random distribution 

(Ripley, 1976).Another method to describe the 

pattern of the points are Moran scatter plots 

which provide a tool for visual exploration of 

spatial autocorrelation (Anselin 1966 and 2002). 

Anselin (2002) describes Moran scatter plots as 

the spatial lag (the average values of a location's 

neighbors) of the variable on the vertical axis 

and the original variable on the horizontal axis. 

In addition, histograms can be used as a quality 

control tool, since they provide a representation 

of the distribution of numerical data and an 

estimate of the probability distribution of a 

continuous variable (Tague, 2004; and Pearson, 

1985).  

The approach presented in this study involves 

integrating remotely sensed data, ground truth 

data (soil salinity data) and regression techniques 

to improve the mapping of soil salinity. The 

cross-correlation between soil salinity data and 

remote sensing data was established using 

reflection from crop cover as an indicator of soil 

salinity. Four regression models were used to 

regress the data derived from the IKONOS 

images with the soil salinity samples collected 

in a number of fields. Integration of remote 

sensing data with field data can minimize time 

and labor during the collection of field data and 

take advantage of information derived from the 

remote sensing data. Furthermore, this study 

compared relatively commonly used models, 

such as OLS and GLM to more sophisticated 

ones, such as MRAS and ANN‟s. 

MATERIALS AND METHODS 

The Study Area 

The study area is located in southeastern 

Colorado, near the town of La Junta (Figure 1). 

Fields in this area are planted with corn, alfalfa, 

wheat, cantaloupe, onions and other vegetables, 

and are irrigated by a multitude of irrigation 

methods including a mixture of border and 

basin, center pivots, and a few drip systems. 

Salinity levels in the irrigation canal systems 

along the river increase from 300 ppm total 

dissolved solids (TDS) near Pueblo to over 

4,000 ppm at the Colorado-Kansas border 

(Gates et al. 2002). In this area, Colorado State 

University (CSU) has conducted an intensive 

field data collection effort that includes a depth 

to water table, irrigation amounts, crop yields, 

rainfall data, and soil salinity data. This study 

uses some of the soil salinity data that was 

collected in intensely monitored fields where in 

2001 corn was planted and fields where in 2004 

alfalfa was planted.  IKONOS satellite images 

were acquired for both years to cover the area 

where the fields are located. 

 

Figure1. The study area with the location of the 

fields planted with alfalfa and corn 

Data Collection 

Soil salinity was measured in the fields using an 

EM-38 electromagnetic probe. The EM-38 takes 

vertical and horizontal readings that can be 

converted to soil salinity estimates. The EM-38 

has the ability to quickly cover large areas 

without ground electrodes and it provides depths 

of exploration of 1.5 meters in the vertical 

direction and 0.75 meters in the horizontal 

direction, respectively. Two soil salinity datasets 

were collected using EM-38 probes, the first 

data set consists of 257 points and the second 

consists of 181 points. Table 1 contains the 

summary of the data collected in the monitored 

fields that were used in this study. The table 

shows that the EM-38 soil salinity estimated for 

these fields ranges from 2.60 to 12.72 dS/m. The 

data also shows that the range of soil salinity in 

the alfalfa fields is higher than that in the corn 

fields.
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Table1. Description of the soil salinity data collected using an EM-38 in alfalfa and corn fields 

Dataset # of samples Average (dS/m) STDEV (dS/m) Min. (dS/m) Max. (dS/m) 

Alfalfa (2004) 

Field 04 71 9.4 6.0 2.7 20.7 

Field 10 59 6.1 3.5 3.1 13.2 

Field 14 46 4.7 1.0 3.1 6.8 

Corn (2001) 

Field 09 108 3.0 0.2 2.6 3.7 

Field 40 80 6.2 2.6 3.0 12.2 

Field 80 68 5.1 2.0 2.7 11.7 
      

The data in Table 1 shows a wide range of 

standard deviation (STDEV) from a low of 0.2 

dS/m to a high of6.0 dS/m. In addition, the 

range of soil salinity varies from an arrow range 

of 2.6to3.7 dS/m to a wide range of 2.7 to 20.7 

dS/m. The salinity content of the collected soil 

samples in the alfalfa fields show a higher range 

and standard deviation than the soil samples 

collected in the corn fields, which can be 

attributed to alfalfa‟s higher tolerance to soil 

salinity than corn. The number of soil salinity 

samples collected in each field was considered 

to be sufficient to properly run the regression 

and interpolation models.  

The remote sensing images used in this research 

are IKONOS satellite images, which have three 

visible spectral bands (blue, green, and red), one 

near infrared (NIR) band and a panchromatic 

band. The spatial resolution of the blue, green, red, 

and NIR bands is 4 m, while the panchromatic 

band resolution is 1m.The spectral resolution of 

the blue, green, red, and NIR bands are as 

follows: 445-516, 508-595, 632-698, and 757-

853 nm, respectively. The relatively high 

resolution of the IKONOS satellite images 

allows for more spatial detail in the study. 

Exploratory Data Analysis 

The spatial point pattern, autocorrelation, and 

distribution of the soil salinity data that was 

used in this study is discussed in this section. 

Figures 2 and 3 display the plots of Ripley‟s K, 

Moran‟s I and the Histograms of the soil salinity 

for the alfalfa and corn fields. The first row of 

each figure displays the locations of the points 

where soil salinity was collected, the second 

row displays the Riley‟s K-function, the third 

row displays the Moran‟s I, and the fourth row 

displays the Histograms. The summary of the 

plots for the Riley‟s K-function include the 

upper and lower simulation envelopes for 99 

simulated realizations. The x-axis represents the 

radii (r) for the calculated simulations, while the 

y-axis displays the Riley‟s K-function. The 

dotted line is the expected value for a random 

pattern (CSR) and the solid black line is the 

observed count. If the solid black line, which 

represents the set of data points, extends below 

the lower envelope for a Poisson distribution 

(grey area on the plot), this suggests that the 

points are distributed regularly as opposed to 

randomly. For the alfalfa fields, the distribution 

plots of the Ripley‟s K-function are regular at 

the ranges of 50 ~ 150, 13 ~ 23, and 22 ~ 50 

meters for field 04, field 10, and field 14, 

respectively. The distribution is random for the 

rest of the data ranges. The maximum deviation 

of the observed K-function from the complete 

spatial randomness (CSR) shows the distance 

where maximum regularity occurs; this occurs 

at 100 m for field 04, 18 m for field 10, and 35 

m for field 14.For the corn fields, the plots of 

the Ripley‟s K-function demonstrate that the 

distributions are regular at the ranges of 22 ~ 60 

m for field 09, 25 ~ 45 m for field 40, and 20 ~ 

50 m for field 80. The patterns are random for 

the rest of data ranges(the dotted line is above 

the solid black line). The maximum regularity 

occurs at approximately 55 m for field 09, 37 m 

for field 40, and 42 m for field 80.From 

observing the Ripley‟s K-function results the 

conclusion is that the spatial pattern for both 

alfalfa and corn fields is not CSR and that 

regularity occurs in about half of the sample 

distance ranges.  

In the Moran‟s I plots, the slope of the scatter 

plot can be used to determine the extent of linear 

associations between the values at a given 

location (x-axis) with values of the same 

variable at neighboring locations (y-axis). A 

positive slope correlates to a positive spatial 

autocorrelation; high values of the variable at 

location i tend to be clustered with high values of 

the same variable at locations that are neighbors of 

i, and vice versa. Depending on their position on 

the plot, the points in the Moran‟s I plot express 

the level of spatial association of each observation 

with its neighbors. The points in the upper right 

and lower left quadrants indicate positive spatial 

association of values that are higher or lower 
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than the sample mean, and the points with 

greater influence are displayed as darker 

asterisks. Of the Moran‟s I plots for the alfalfa 

fields, Field 10 shows the strongest autocorrelation 

followed by Field 14, while Field 04 shows the 

weakest autocorrelation. For the corn fields, the 

Moran‟s I plot points for Field 40 and Field 

80exhibit a strong autocorrelation and Field 09 

exhibits a weak autocorrelation. 

The histogram plots at the bottom of both figures 

illustrate the distribution of the soil salinity data 

that was collected for both the alfalfa and corn 

fields. For the alfalfa fields, Field 14 

demonstrates a distribution close to a normal 

distribution, while Field 04 and Field 10 are 

right skewed. For corn fields, Field 09 and Field 

80 are close to a normal distribution while Field 40 

is right skewed. It should be noted that in some 

cases the visual inspection of histograms might be 

unreliable, so the significant Shapiro-Wilk test 

was used in addition to the histograms to 

compare the sample distribution to the normal 

distribution to ascertain whether the data shows 

a serious deviation. The test shows a p-value of 

0.372 which is larger than 0.05, indicating that 

the distribution of this field is not significantly 

different from the normal distribution. The 

Shapiro-Wilk test for the rest of the fields‟ p-

values is less than 0.05, with the exception of Field 

14, suggesting their distribution is not normal.

 

Figure2. Map of soil sample locations, Ripley’s K-function plots, Moran’s I scatter plots, and Histogram plots 

of the three alfalfa fields. 
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Figure3. Map of soil sample locations, Ripley’s K-function plots, Moran’s I scatter plots, and Histogram plots 

of the three corn fields. 

Applying the Regression Models to the Data Sets 

Linear Regression Models 

The main assumptions of the linear regression 

models are that the relationship between the 

predictor (x) and the outcome (y) is linear and 

that the residual errors are normally distributed. 

There is an additional assumption that the residuals 

have constant variance (homoscedasticity), which 

is valid for the OLS model but is waved for the 

GLM model. One way to find the accuracy of 

the regression models is to check the residuals. 

In some cases, the data might contain some 

influential observations such as outliers that 

might affect the result of the regression. 

Therefore, there is a need to verify if removing 

any outliers will impact the results. The 

assumptions of the linear regression models can 

be confirmed by producing some diagnostic 

plots that visualize the residual errors. 

 

Figure4. Diagnostic plots of the residuals of the OLS model 
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Figure5. Diagnostic plots of the residuals of the GLM model 

Figures4and 5 show the diagnostic plots of the 

residuals of the OLS and GLM models. In each 

figure, the plot on the upper left shows the 

residuals versus the fitted values, which are used 

to check the linear relationship assumption. A 

horizontal red line and no distinct pattern among 

the points is an indication of a linear relationship, 

which is not present in these plots of residuals 

vs. fitted values for the two cases and therefore 

disproves the assumption of normal residuals. In 

both cases, there is no significant difference or 

improvement of the GLM over the OLS model. 

Also, the variation around the estimated 

regression line (red line) is not constant in both 

cases, which means the assumption of equal 

error variance is also disproven. 

The plot on the upper right of both figures 

shows the normal probability plot (Normal Q-Q) 

of the residuals, which is used to check if the 

residuals are normally distributed. If the 

residuals follow a straight line, it is an indication 

of the normality of the residuals. The plots in 

both cases show that there are some points at the 

top and bottom that deviate from the straight-

line pattern. These points do not severely 

deviate from the straight line, which implies that 

the residuals are close to a normal distribution.  

The plot on the bottom left of both figures shows 

the scale or spread location. This plot is used to 

determine if the residuals are spread equally along 

the range of predictors (the homogeneity of the 

variance or homoscedasticity). A horizontal line 

with equally or randomly spread out points is an 

indication of a good model fit. The plot in both 

cases shows that the red line is not horizontal 

and there is also no equal or random spread of 

the points around the line, which means that the 

assumption of equal variance is also negated.  

The plot on the bottom right of both figures 

shows the residuals versus leverage and is meant 

to assist in finding influential points that might 

impact the residuals, as not all outliers are 

influential in a linear regression analysis. Even 

though the data does have some extreme values, 

they might not be influential in the determination 

of a regression line. However, the collection of 

points in the upper and lower right corners can be 

influential against a regression line. The red 

dashed lines are called Cook‟s distance; when 

there are points that lie outside of Cook‟s 

distance; this is an indication that removing 

these points could influence the regression 

results. In other words, the regression results 

will be altered if these points are excluded. 

There are no points outside Cook‟s distance in 

the plot in both cases, which means there are no 

points that if removed would influence the 

results. 

Overall, the analysis of the residuals for both the 

OLS and GLM models shows that both of them 

violated the assumptions of the models. This 

suggests that there might be some nonlinearity 

in the data and that both models were not able to 

handle it. 
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Linear Regression Models 

Multivariate Adaptive Regression Spline Model (MARS) 

 

Figure6. Diagnostic plots of the MARS model residuals 

Figure 6 shows the diagnostic plots of the 

MARS model residuals. The plot on the upper 

left shows the MARS model selection. The 

following two terms are related to the plot:1) 

RSq, which is represented by the red dotted line, 

normalizes the residual sum of squares (RSS). 

RSS varies from 0 (a model that consistently 

predicts the same value as the mean observed 

response value) to 1 (a model that predicts 

responses in the training data); and 2) GRSq, 

which is represented by a solid black line, 

normalizes the Generalized Cross Validation 

(GCV). Both the RSq and GRSq are measures 

of how well the model would predict values 

using data not included in the training set. The 

plot shows that RSq and GRSq initially run 

together and then diverge as the number of 

terms increases. The vertical dotted grey line, 

which is used to select the number of terms in 

the model, is positioned at the maximum GRSq 

and indicates that the best model has seven 

terms and uses all predictors. The word terms is 

related to the fact that MARS constructs a very 

large model by progressively adding basis 

functions or splines (interaction terms). The 

number of predictors is depicted by the black 

dotted line. The number of terms should generally 

be larger than the number of predictors (IKONOS 

satellite bands), which is set by the user when 

running the model. 

The plot on the upper right shows the 

cumulative distribution of the absolute values of 

the residuals. The ideal model starts at 0 and 

rises quickly to 1. The value at the 50% vertical 

grey line represents the median absolute 

residual, which is approximately 0.35. The value 

at the 95% vertical grey line represents the 

absolute value of the residuals, which is less 

than 1.4. These values correspond to the training 

data, wherein the predicted values are within 1.4 

units of the observed values 95% of the time. 

All absolute residual values estimated for soil 

salinity range between 0 and 1.5 dS/m.  

The plot on the bottom left shows the scatter 

plot of the residuals and fitted values. The scales 

of the axes are intended to give an idea of the 

size of the residuals relative to the predicted 

values. Ideally, the residuals should show 

constant variance, meaning the residuals should 

remain evenly spread out as the fitted values 

increase. Measurement numbers 2, 5, and 14 

(which are shown on the graph) can be 

considered as outliers that have observations 

that could potentially increase the residual 

variance in the MARS model.  

The plot on the bottom right shows the residual 

Q-Q. There are some points in the upper and 

lower parts of the line which deviate from the 

straight line, therefore, the assumption of the 

normally distributed residuals is invalidated.
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Artificial Neural Network Model (Ann) 

 

Figure7. The architecture of a multi-layer Artificial Neural Network model (ANN) 

Figure 7 shows the architecture of a multi-layer 

Artificial Neural Network model (ANN). It 

shows the input, hidden, and output layers of an 

ANN. The data from IKONOS landsat image 

bands: blue, green, red, near, and NDVIon the 

left of the figure represent the input elements, 

also called the input vector. The hidden layers 

are the middle, while the output layer is the 

dependent variable (soil salinity) at the right 

side of the figure. The circles in blue represent 

the intercept or the constants. Every processing 

elementor neurode in a layer is connected to all 

processing elements in the next layer, with input 

neurodes connected to the hidden layer neurodes. 

This pattern continues until the neurodes in the 

last hidden layer are connected to the output 

layer neurodes. Each of these connections carry 

a value, commonly called a weight, which are 

the numbers displayed next to the lines. 

Model Performance Evaluation 

The following statistical parameters were used 

to evaluate the performance ofthe OLS, GLM, 

MARS, and ANN models used in this study: 

 Nash-Sutcliffe efficiency (NSE) is a 

normalized statistic that determines the 

relative magnitude of the residual variance 

compared to the measured data variance 

(Nash and Sutcliffe, 1970). It is recommended 

as a performance measure by ASCE (1993) 

and Legates and McCabe (1999).NSE 

indicates how well a plot of observed versus 

predicted data fits a 1:1 line and is computed 

as shown inequation (1): 

𝑁𝑆𝐸 = 1−  
 (𝑍𝑖

𝑜𝑏𝑠 −𝑍𝑖
∗)2𝑛

𝑖=1

 (𝑍𝑖
𝑜𝑏𝑠 −𝑍 )2𝑛

𝑖=1

           (1) 

     where 𝑍𝑖
𝑜𝑏𝑠  is the  ith observation for the 

constituent being evaluated,𝑍𝑖
∗ is the ith 

predicted value for the constituent being 

evaluated,𝑍  is the mean of the observed data 

for the constituent being evaluated, and n is 

the total number of observations. NSE values 

range between −∞ and 1, with NSE=1 being 

the optimal value. Values between 0 and 1 

are generally viewed as acceptable levels of 

performance, whereas values less than 0 

indicate that the mean observed value is a 

better predictor than the simulated value and 

is regarded as unacceptable performance; and 

 Root mean square error (RMSE)which is 

used to measure the prediction precision or 

model accuracy (Dobermann et. al., 2006; 

Triantafilis et. al., 2001) and is defined as 

shown in equation (2): 

𝑅𝑀𝑆𝐸 = 1−  
1

𝑛
 (𝑍𝑖

𝑜𝑏𝑠 − 𝑍𝑖
∗)2𝑛

𝑖=1          (2) 

where 𝑍𝑖
𝑜𝑏𝑠  is the observed value of the 

i
th

 observation, 𝑍𝑖
∗ is the predicted value of 

the i
th
 observation, and n is the number of 

points collected. The smaller the RMSE, 

the closer the prediction is to the measured 

values. The RMSE tends to place more 

emphasis on larger errors and, consequently, 

gives a more conservative measure of 

performance than the mean absolute error 

(MAE). 
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RESULTS 

In this study graphical and analytical techniques 

are employed to evaluate the performance of the 

OLS, GLM, MARS, and ANN models used. 

Graphical techniques are used to perform an 

overview of the model performance and provide a 

visual comparison of the estimated and measured 

data (ASCE, 1993) and, according to Legates and 

McCabe Jr.(1999), graphical techniques are 

essential for appropriate model evaluation. In 

some cases, the graphical techniques might be 

misleading or do not provided enough information 

to interpret the results accurately, which is why 

analytical parameters are used for evaluation in 

addition to graphical parameters. The NSE and 

RMSE are used to evaluate how well the predicted 

data fitswith the observed data, the prediction 

precision, and the accuracy of the results. 

 

Figure8. The scatter plots of the observed and predicted soil salinity of the alfalfa and corn fields when using 

the OLS, GLM, MARS, and ANN models 

Figure 8 displays the scatter plots of the observed 

and predicted soil salinity of the alfalfa and corn 

fields when using the OLS, GLM, MARS, and 

ANN models. Among the three alfalfa fields, Field 

14 shows a strong trend between the observed and 

predicted data with minor differences among the 

four models. Field 10 shows some correlation 

between the observed and predicted data among 

the four models, while Field 04 shows poor 

performance among the four models. The ANN 

demonstrates the best performance of all four 

models, while the three other models show poor 

performance again with minor differences among 

them. Field 80 performed best out of the three 

corn fields, followed by Field 40 and lastly Field 

09, which performed poorly. Of all four models, 

the ANN model exhibits the best overall 

performance; while the OLS, GLM, and GLM 

models exhibit overall poor performances and 

the differences among them are slight. 



Evaluating Linear and Nonlinear Regression Models in Mapping Soil Salinity 

International Journal of Research in Agriculture and Forestry V7 ● I3 ● 2020                                           31 

 

Figure9. The histogram plots of the observed and the predicted soil salinity of the alfalfa and corn fields when 

using the OLS, GLM, MARS, and ANN models 

Figure 9displays the histogram plots of the 

observed and predicted soil salinity of the alfalfa 

and corn fields when using the OLS, GLM, 

MARS, and ANN models. The variation and 

shape of the distribution of the observed data set 

was compared to that of the predicted datasets 

of the different models. The alfalfa field‟s 

distributions show that there is no significant 

difference in the distributions between all the 

models for Field 14. The distribution of the 

predicted data using the ANN model is closest 

to the distribution of the observed data for the 

other two fields (Field 10 and Field 04). For 

these two fields, the distribution of the predicted 

data using the MARS model performs second 

best, while the OLS and GLM predicted data 

distribution is not a good match with the 

distribution of the observed data.  

The distributions of the predicted data of the 

OLS and GLM models are close to the normal 

distribution for Field 10 and Field 04, while the 

observed data for these two fields are not. For 

the corn fields, there is no significant difference 

in the distribution of the predicted data using the 

OLS, GLM, MARS for the three fields. There is 

a slight improvement when using the ANN 

model over the other three models of these 

fields. 

Table 2 shows the NSE and RMSE parameters 

that are used to evaluate the performance of the 

OLS, GLM, MARS, and ANN models when 

predicting soil salinity of the alfalfa and corn 

fields. The closest value of NSE to one is the 

best, positive values are acceptable, while 

negative values means that the model prediction 

is no better than using the mean value. Of the 

four models used, the ANN model shows the 

best NSE values, which are the closest to 1 in 

both the alfalfa and corn fields. For the alfalfa 

fields (Field 04, Field 10, and Field 14), the 

NSE values are 0.55, 0.96, and 0.90 

respectively. Among the three alfalfa fields, 

both Field 10 and Field 14 have values close to 

1 (0.96 and 0.90, respectively), while Field 04 

has a value of 0.55. The MARS model reveals 

NSE values less than those of the ANN model 

but better than those of both the OLS and GLM 

models. Therefore, for the alfalfa fields, ANN 

performs the best followed by MARS, while 

both OLS and GLM have lower but still 

acceptable NSE values. The three corn fields, 

Field 09, Field 40, and Field 80, have NSE 
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values of 0.53, 0.67, and 0.89, respectively. 

Field 80 has the closest value to 1 (0.89), Field 

40 has a value of 0.67, and Field 09 has a value 

of 0.53. The three other models (OLS, GLM, 

and MARS) have accepted values of the NSE 

parameter and they are all close to each other, so 

ANN performs best for the corn fields while 

OLS, GLM and MARS have acceptable values 

of NSE. Generally, the smaller the value of the 

RMSE, the better the performance of the model. 

For the alfalfa fields (Field 04, Field 10, and 

Field 14), the RMSE values for the ANN model 

are 4.01, 0.74, and 0.31, respectively. Of the 

four models, the ANN has the smallest values, 

followed by MARS, while both the OLS and 

GLM have the same performance levels with 

higher RMSE values. Of the three alfalfa fields, 

Field 14 has the smallest RMSE value at 0.31, 

followed by Field 10, and Field 04 has the 

greatest value of RMSE. For the corn fields 

(Field 09, Field 40, and Field 80), the RMSE 

values for the ANN model are 0.14, 1.47, and 

0.68 respectively, which are smaller values in 

comparison to the other models. Among these 

three fields, Field 09 has the smallest value 

(0.14), and Field 40 has the highest (1.47), while 

Field 80 lies in between. The three other models 

(OLS, GLM, and MARS) show higher RMSE 

values and they are all close to each other in 

magnitude. 

Table2. The NSE and RMSE parameters that are used to evaluate the performance of the OLS, GLM, MARS, 

and ANN models when predicting soil salinity of the alfalfa and corn fields 

Alfalfa 

 Field 04 Field 10 Field 14 

 NSE RMSE NSE RMSE NSE RMSE 

OLS 0.15 5.49 0.52 2.42 0.49 0.69 

GLM 0.15 5.49 0.52 2.42 0.49 0.69 

MARS 0.11 5.60 0.73 1.82 0.61 0.60 

ANN 0.55 4.01 0.96 0.74 0.90 0.31 

Corn 

 Field 09 Field 40 Field 80 

OLS 0.13 0.19 0.29 2.16 0.46 1.47 

GLM 0.13 0.19 0.29 2.16 0.46 1.47 

MARS 0.17 0.19 0.30 2.16 0.46 1.48 

ANN 0.53 0.14 0.67 1.47 0.89 0.68 
 

SUMMARY AND CONCLUSIONS 

In this study four regression models (OLS, 

GLM, MARS, and ANN) were evaluated using 

six datasets comprised of field data combined 

with remote sensing data, three of the fields had 

alfalfa growing and three had corn growing. 

These four models were selected because of 

their different abilities.  The OLS model can 

handle normal errors and constant variance, 

while the GLM can handle non-normal errors 

and non-constant variance. The MARS model 

seeks to elaborate on individual behavior as a 

result of a combination of internal and external 

factors and influences.  

ANN uses the processing of the brain as a basis 

to develop algorithms that can be used to model 

complex patterns and prediction problems. This 

study shows that among these four different 

regression models, the performance of the ANN 

model is the best overall, followed by MARS 

and then by OLS and GLM. Combining the 

graphical and analytical evaluations together, 

the regression models perform slightly better 

infields planted with corn than in fields planted 

with alfalfa. The model performance depends on 

the conditions of the data collected. It is clear 

from the results of this study that the 

performance of the ANN model was the best.  

However, the ANN performance was poor for 

some fields, so it is highly recommended that 

the condition of the field data should be 

evaluated before running any model. This study 

showed that the closer the pattern of the data 

used is to CSR, the higher the autocorrelation. 

Also, the closer to a normal distribution the soil 

salinity data collected is, the better the 

performance of the regression models. This 

study showed that integrating field data with 

remote sensing and choosing the appropriate 

regression model can reduce the amount of time 

and money spent by minimizing the data that 

needs to be collected from the fields. This study 

also determined that the selection of the 

evaluation parameters is very important since no 

single parameter is capable of evaluating the 

performance from all aspects and provide a 

credible and accurate assessment of the model‟s 

performance. Thus, it is strongly recommended 

not to lean in the direction of only evaluating 

one statistical parameter, since the use of several 

statistical parameters, if carefully selected, is 
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likely to result in a better assessment of the 

model performance. 

REFERENCES 

[1] Abbas, A., Khan, S., Hussain, N., Hanjra, M. 

and Akbar, S. Characterizing soil salinity in 

irrigated agriculture using a remote sensing 

approach, Physics and Chemistry of the Earth, 

2013, 43-52. 

[2] Abuelgasim, A. and Ammad, R. Mapping soil 

salinity in arid and semi-arid regions using 

Landsat 8 OLI satellite data, Remote Sensing 

Applications: Society and Environment, 2019, 

13, 415-425. 

[3] Allbed, A., Kumar, L., and Sinha, P. Mapping 

and Modelling Spatial Variation in Soil Salinity 

in the Al Hassa Oasis Based on Remote Sensing 

Indicators and Regression Techniques, Remote 

Sensing, 2014, 6(2), 1137-1157. 

[4] ASCE Task Committee on Definition of 

Criteria for Evaluation of Watershed Models, 

Criteria for evaluation of watershed models. 

ASCE Journal of Irrigation and Drainage 

Engineering, 1993, 119, pp. 429–442. 

[5] Anselin, L. The Moran Scatterplot as an ESDA 

Tool to Assess Local Instability in Spatial 

Association. In M. Fischer, H. Scholten, and D. 

Unwin (eds.), Spatial Analytical Perspectives 

on GIS. London: Taylor and Francis, 1996, pp. 

111-125. 

[6] Anselin, L. Exploring Spatial Data with DynES 

DA2. CSISS and Spatial Analysis Laboratory 

University of Illinois, Urbana-Champaign. 

September 12, 2002. 

[7] Diggle, P. J. Statistical Analysis of Spatial Point 

Patterns New York. 2003, Oxford University 

Press Inc. 

[8] Dobermann A., Witt C., Dawe D., Gines H.C., 

Nagarajan R., Satawathananont S., Son T.T., 

Tan P.S., Wang G.H., Chien N.V., Thoa V.T.K., 

Phung C.V., Stalin P., Muthukrishnan P., Ravi V., 

Babu M., Chatuporn S., Kongchum M., Sun Q., Fu 

R., Simbahan G.C. and Adviento M.A.A. Site-

specific nutrient management for intensive rice 

cropping systems in Asia, Field Crops Res. 

2002, 74, 37–66. 

[9] Douaik, A., Van Meirvenne, M. and Toth, T. 

“Spatio-temporal kriging of soil salinity 

rescaled from bulk soil electrical conductivity.” 

Quantitative Geology And Geostatistics, GeoEnv 

IV: 4th European Conf. on Geostatistics For 

Environmental Applications, X. Sanchez-Vila, 

J. Carrera, and J. Gomez-Hernandez, eds., 

Kluwer Academic, Dordrecht, The Netherlands, 

2004, 13(8) 413–424. 

[10] Eldeiry, A.A. and Garcia, L.A..“Detecting soil 

salinity in alfalfa fields using spatial modeling 

and remote sensing”. Soil Science Society of 

America Journal, 2008, 72(1), 201-211. 

[11] Eldeiry, A.A. and Garcia, L.A. “Comparison of 

ordinary kriging, regression kriging, and 

cokriging techniques to estimate soil salinity 

using LANDSAT images”. ASCE Journal of 

Irrigation and Drainage Engineering, 2010, 

136:355. 

[12] Eldeiry, A. and Garcia, L. A. “Using Indicator 

Kriging Technique for Soil Salinity and Yield 

Management".ASCE Journal of Irrigation and 

Drainage Engineering, 2011,137(2), 82-93. 

[13] Eldeiry, A. and Garcia, L.A. “Evaluating the 

performance of ordinary kriging in mapping 

soil salinity". ASCE Journal of Irrigation and 

Drainage Engineering, 2012a,138(12), https:// 

doi.org/10.1061/(ASCE)IR.1943-4774.0000517. 

[14] Eldeiry, A. and Garcia, L.A. “Using disjunctive 

kriging as a quantative approach to manage soil 

salinity and crop yield".ASCE Journal of Irrigation 

and Drainage Engineering, 2012b, 138(3), 

https://doi.org/10.1061/(ASCE)IR.1943-4774.00 

00392. 

[15] Freedman, D.A. (2009). Statistical Models: 

Theory and Practice. Cambridge University 

Press. p. 26. A simple regression equation has 

on the right hand side an intercept and an 

explanatory variable with a slope coefficient. A 

multiple regression equation has two or more 

explanatory variables on the right hand side, 

each with its own slope coefficient. 

[16] Friedman, J.H. “Multivariate Adaptive Regression 

Splines”. The Annals of Statistics, 1991, 19: 1. Doi: 

10.1214/aos/1176347963. JSTOR 2241837. 

MR. 1091842. ZB1 0765.62064. 

[17] Gates, T.K., Burkhalter, J.P., Labadie, J.W., 

Valliant, J.C. and Broner, I.“Monitoring and 

modeling flow and salt transport in a salinity-

threatened irrigated valley”. Journal of Water 

Resources Planning and Management, 2002, 

128(2), 87-99. 

[18] Gujarat D.N. Basic Econometrics. 2003, New 

Delhi; Tatar –McGraw-Hill. 

[19] Hsu, K., Gupta, H.V. and Sorooshian, S. 

(1995): “Artificial neural network modeling of 

the rainfall-runoff process”. Water Resources 

Research, 1995, 31(10), 2517-2530. https:// 

doi.org/10.1029/95WR01955 

[20] Legates, D.R. and McCabe Jr, G.J. “Evaluating 

the use of „goodness-of-fit‟ measures in 

hydrologic and hydroclimatic model validation.” 

Water Resources Research, 1999, 35(1), 233–241. 

[21] Lewis, P.A.W. and Stevens, J.G. “Nonlinear 

Modeling of Time Series Using Multivariate 

Adaptive Regression Splines (MARS)”. Journal 

of the American Statistical Association, 1991, 

86:416, 864-877, DOI: 10.1080/01621459 

.1991.10475126. 

[22] McBratney, A.B, Mendonca Santos, M.L. and 

Minasny, B., On digital soil mapping, Geoderma, 

2003, 3-52. 

https://doi.org/10.1214/aos/1176347963
https://www.jstor.org/stable/2241837
https://www.ams.org/mathscinet-getitem?mr=1091842
https://zbmath.org/?format=complete&q=an:0765.62064
https://doi.org/10.1029/95WR01955
https://doi.org/10.1029/95WR01955


Evaluating Linear and Nonlinear Regression Models in Mapping Soil Salinity 

34                                           International Journal of Research in Agriculture and Forestry V7 ● I3 ● 2020 

[23] McColl, K.A., Ryu, D., Matic, V., Walker, J.P., 

Costelloe, J. and Rudiger, C. “Soil salinity impacts 

on l-band remote sensing of soil moisture”. IEEE 

Geoscience and Remote Sensing Letter, 2012, 

9, 262–266. 

[24] Nelder, J., and Wedderburn, R. "Generalized 

Linear Models". Journal of the Royal Statistical 

Society. Series A (General). Blackwell Publishing. 

1972, 135(3), 370–384. doi:10. 2307/2344614.  

JSTOR 2344614. 

[25] Pearson, K. “Contributions to the Mathematical 

Theory of Evolution. II. Skew Variation in 

Homogeneous Material”.  Philosophical 

Transactions of the Royal Society A: Mathematical, 

Physical and Engineering Sciences, 1985, 186: 

343–414.  

[26] Qian, Shen-En. Ed. (2016). Optical Payloads 

for Space Missions. John Wiley & Sons. P. 824. 

ISBN 978-1-118-94514-8 – via Googlw Books. 

[27] Rencher, A.C., and Christensen, W.F. "Chapter 

10, Multivariate regression – Section 10.1, 

Introduction", Methods of Multivariate Analysis, 

Wiley Series in Probability and Statistics, 2012, 

709 (3rd ed.), John Wiley & Sons, p. 19,  

ISBN 9781118391679. 

[28] Ripley, B.D. "The second-order analysis of 

stationary point processes". Journal of Applied 

Probability, 1976, 13, 255–266. doi:10.2307 

/3212829. 

[29] Robbins, C.W. and Wiegand, C.L. Field and 

laboratory measurements. Agricultural Salinity 

Assessment and Management, American 

Society of Civil Engineers, 1990, New York. 

[30] Robinson, D.A., Lebron, I., Kocar, B., Phan, 

K., Sampson, M., Crook, N. and Fendorf, S. Time-

lapse geophysical imaging of soil moisture 

dynamics in tropical deltaic soils: An aid to 

interpreting hydrological and geochemical 

processes. Water Resources Research, 2009, 

32, doi: 10.1029/2008WR006984. 

[31] Saey, T., Van Meirvenne, M., De Smedt, P., 

Neubauer, W., Trink, I., Verhoeven, G. and Seren, 

S. Integrating multi-receiver electromagnetic 

induction measurements into the interpretation 

of the soil landscape around the school of 

gladiators at Carnuntum. European Journal of 

Soil Science, 2013, 64,716-727. 

[32] Sarle, W.S. “Neural network and statistical 

modeling”. Proceedings of the Nineteenth Annual 

SAS users group international conference, 1994. 

[33] Spies, B. and Woodgate, P. Salinity Mapping in 

the Australian context. Technical Report. Land 

and Water Australia. 2004, 153p. 

[34] Triantafilis, J., Odeh, I. and McBratney, A. “Five 

geostatistical models to predict soil salinity from 

electromagnetic induction data across irrigated 

cotton.” Soil Sci. Soc. Am. J, 2001, 65(3), 869–

878. 

[35] Upton G. and Cook I. Oxford Dictionary of 

Statistics. Great Britain; Oxford University Press, 

2002. 

[36] Wiegand, C. L., Rhoades, J.D., Escobar, D.E. 

and Everitt, J.H. Photographic and videographic 

observations for determining and mapping the 

response of cotton to soil salinity. Remote 

Sensing of Environment, 1994, 49:212-223.  

[37] Wu, J., Vincent, B., Yang, J., Bouarfa, S., and 

Vidal, A. Remote Sensing Monitoring of Changes 

in Soil Salinity: A Case Study in Inner Mongolia, 

China. Sensors, 2008, 8, 7035-7049; DOI: 

10.3390/s8117035 

[38] Zhu, Q., Lin, H.S., & Doolittle, J.A. Repeated 

electromagnetic induction surveys for determining 

subsurface hydrologic dynamics in an agricultural 

landscape. Soil Science Society of America 

Journal, 2010a, 74, 1750-1762. 

[39] Zhu, Q., Lin, H.S., and Doolittle, J.A. Repeated 

electromagnetic induction surveys for improved 

soil mapping in an agricultural landscape. Soil 

Science Society of America Journal, 2010b, 74, 

1763-1774.

 

Citation: Luis A. Garcia and Ahmed A. Eldeiry, “Evaluating Linear and Nonlinear Regression Models in 

Mapping Soil Salinity”, International Journal of Research in Agriculture and Forestry, 7(3), 2020, pp 21-34. 

Copyright: © 2020 Luis A. Garcia. This is an open-access article distributed under the terms of the 

Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

https://en.wikipedia.org/wiki/Journal_of_the_Royal_Statistical_Society
https://en.wikipedia.org/wiki/Journal_of_the_Royal_Statistical_Society
https://en.wikipedia.org/wiki/Journal_of_the_Royal_Statistical_Society
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.2307/2344614
https://en.wikipedia.org/wiki/JSTOR
https://www.jstor.org/stable/2344614
https://books.google.com/books?id=0g-PAuKub3QC&pg=PA19
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9781118391679
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.2307%2F3212829
http://dx.doi.org/10.2307%2F3212829

